z-logo
open-access-imgOpen Access
Thyroid Nodule Classification in Ultrasound Images by Fusion of Conventional Features and Res-GAN Deep Features
Author(s) -
Yuan Hang
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/9917538
Subject(s) - artificial intelligence , pattern recognition (psychology) , computer science , feature extraction , histogram equalization , residual , convolutional neural network , local binary patterns , thyroid nodules , histogram , deep learning , computer vision , image (mathematics) , thyroid , medicine , algorithm
In spite of the gargantuan number of patients affected by the thyroid nodule, the detection at an early stage is still a challenging task. Thyroid ultrasonography (US) is a noninvasive, inexpensive procedure widely used to detect and evaluate the thyroid nodules. The ultrasonography method for image classification is a computer-aided diagnostic technology based on image features. In this paper, we illustrate a method which involves the combination of the deep features with the conventional features together to form a hybrid feature space. Several image enhancement techniques, such as histogram equalization, Laplacian operator, logarithm transform, and Gamma correction, are undertaken to improve the quality and characteristics of the image before feature extraction. Among these methods, applying histogram equalization not only improves the brightness and contrast of the image but also achieves the highest classification accuracy at 69.8%. We extract features such as histograms of oriented gradients, local binary pattern, SIFT, and SURF and combine them with deep features of residual generative adversarial network. We compare the ResNet18, a residual convolutional neural network with 18 layers, with the Res-GAN, a residual generative adversarial network. The experimental result shows that Res-GAN outperforms the former model. Besides, we fuse SURF with deep features with a random forest model as a classifier, which achieves 95% accuracy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom