Aero-Engine Real-Time Models and Their Applications
Author(s) -
Jiajie Chen,
Zhongzhi Hu,
Jiqiang Wang
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/9917523
Subject(s) - flight envelope , component (thermodynamics) , aero engine , reliability (semiconductor) , envelope (radar) , computer science , adaptation (eye) , engineering , control engineering , aerospace engineering , mechanical engineering , power (physics) , radar , physics , optics , quantum mechanics , aerodynamics , thermodynamics
Aero-engine real-time models are widely used in control system design, integration, and testing. They can be used as the basis for model-based engine intelligent controls and health management, which is critical to improve engine safety, reliability, economy, and other performance indicators. This article provides an up-to-date review on aero-engine real-time modeling methods, model adaptation techniques, and applications for the last several decades. Besides, future research directions are also discussed, mainly focusing on the following four areas:(1) verification of the aero-engine real-time model over the full flight envelope; (2) better balance between real-time performance and accuracy in simplified methods for the aero-thermodynamic component level models; (3) further improvement in the real-time performance for the identified nonlinear models over the full flight envelope; (4) improvement of hybrid on-board adaptive real-time models combining the advantages of both model-based and data-based on-board adaptive real-time modeling methods.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom