6G Green IoT Network: Joint Design of Intelligent Reflective Surface and Ambient Backscatter Communication
Author(s) -
Qiang Liu,
Songlin Sun,
Heng Wang,
Shaowei Zhang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/9912265
Subject(s) - beamforming , computer science , joint (building) , reflection (computer programming) , transmitter power output , power (physics) , backscatter (email) , transmission (telecommunications) , telecommunications , wireless , transmitter , architectural engineering , channel (broadcasting) , physics , quantum mechanics , engineering , programming language
Ambient backscatter communication (AmBC) is one of the candidate solutions for the 6G green internet of things (IoT) network. However, the uncontrollability of the radio frequency (RF) environment is one of the main obstacles hindering the popularization of AmBC. The intelligent reflective surface (IRS) can improve the radio frequency environment by adjusting the phase and amplitude of the incident signal, which provides the possibility for the widespread deployment of AmBC. Currently, there is no discussion about the joint optimization of AmBC and IRS. In this paper, we introduce a novel IRS and AmBC joint design method. The purpose of this method is to jointly design the beamforming vector, the IRS phase shift, and the reflection coefficient of AmBC to minimize the AP’s transmit power while ensuring the quality of service of the AmBC system and the primary communication system. Due to the nonconvexity of the problem, the time complexity of solving the problem through exhaustive search will be very high. Therefore, we propose a joint design method based on an iterative beamforming vector, IRS phase shift, and reflection coefficient to minimize the AP’s transmit power. This method can effectively reduce the transmission power of the access point (AP), and the simulation results prove the effectiveness of the method.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom