Computation of Topological Indices of NEPS of Graphs
Author(s) -
Muhammad Imran,
Shehnaz Akhter,
Muhammad Kamran Jamil
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/9911226
Subject(s) - multiplicative function , computation , graph , mathematics , degree (music) , discrete mathematics , computer science , combinatorics , algorithm , mathematical analysis , physics , acoustics
The inspection of the networks and graphs through structural properties is a broad research topic with developing significance. One of the methods in analyzing structural properties is obtaining quantitative measures that encode data of the whole network by a real quantity. A large quantity of graph-associated numerical invariants has been used to examine the whole structure of networks. In this analysis, degree-related topological indices have a significant place in nanotechnology and theoretical chemistry. Thereby, the computation of indices is one of the successful branches of research. The noncomplete extended p -sum NEPS of graphs is a famous general graph product. In this paper, we investigated the exact formulas of general zeroth-order Randić, Randić, and the first multiplicative Zagreb indices for NEPS of graphs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom