z-logo
open-access-imgOpen Access
Wavelet Packet Transform-Assisted Least Squares Support Vector Machine for Gear Wear Degree Diagnosis
Author(s) -
Hongmin Wang,
Liang Chan
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/9889933
Subject(s) - vibration , support vector machine , smoothing , noise (video) , signal (programming language) , wavelet packet decomposition , least squares support vector machine , degree (music) , computer science , wavelet , algorithm , wavelet transform , pattern recognition (psychology) , artificial intelligence , acoustics , computer vision , physics , image (mathematics) , programming language
Wear degree detection of gears is an effective way to prevent faults. However, due to the interference of high-speed meshing vibration and environmental noise, the weak vibration signal generated by the gear is easily covered by the noise, which makes it difficult to detect the degree of wear. To address this issue, this paper proposes a novel gear wear degree diagnosis method based on local weighted scatter smoothing method (LOWESS), wavelet packet transform (WPT), and least square support vector machine (APSO-LSSVM) optimized by adaptive particle swarm algorithm. According to the low signal-to-noise ratio characteristic of gear vibration signal, LOWESS is first used to preprocess the signal spectrum. Then, the characteristic parameters used to characterize gear wear are extracted from different decomposition depths by WPT and, finally, combined with APSO-SVM to diagnose the degree of gear wear. Compared with the basic least squares support vector machine, the improved method has better performance in sample classification. The experimental results show that the method in this paper can effectively reduce the diagnosis error caused by background noise, and the diagnosis accuracy reaches 98.33%, which can provide a solution for the health status monitoring of gears.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom