z-logo
open-access-imgOpen Access
Characterization of Chlorhexidine-Impregnated Cellulose-Based Hydrogel Films Intended for the Treatment of Periodontitis
Author(s) -
Ola Tarawneh,
Imad Hamadneh,
Rawan Huwaitat,
Ameen Rasheed Al-Assi,
Abdulla El Madani
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/9853977
Subject(s) - epichlorohydrin , chlorhexidine , self healing hydrogels , periodontitis , cellulose , chemistry , biofilm , bacterial cellulose , materials science , dentistry , bacteria , polymer chemistry , medicine , biochemistry , biology , genetics
Periodontitis comprises a chronic inflammation that is initiated by microbiota biofilm. If left untreated, periodontitis may lead to permanent tooth loss. Herein, we propose to design and improve a localized form of therapy comprising a chlorhexidine-impregnated hydrogel. Hydrogel films were prepared by varying the ratio between cellulose (MCC) and carboxymethylcellulose sodium (CMC) using the crosslinker epichlorohydrin (ECH). The hydrogel was loaded with chlorhexidine. Increasing the CMC ratio led to a reduction in the number of pores, an increase in their size, lower glass transition temperature ( T g ), decreased Young's modulus, and increased film stretching and affected the time of release. Bacterial and fungal zones of inhibition showed similar activity and were not affected by the CMC and MCC ratio. Hydrogels loaded with chlorhexidine prevented the growth of S. oralis and C. albicans microorganisms and may provide a promising local delivery system for treating periodontitis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom