Recognition Method of Vehicle Cluster Situation Based on Set Pair Logic considering Driver’s Cognition
Author(s) -
Shijie Liu,
Xiaoyuan Wang,
Chenglin Bai,
Huili Shi,
Yang Zhang,
Fusheng Zhong,
Yaqi Liu
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/9809279
Subject(s) - computer science , set (abstract data type) , cluster (spacecraft) , cognition , interval (graph theory) , artificial intelligence , basis (linear algebra) , data mining , machine learning , mathematics , geometry , combinatorics , neuroscience , biology , programming language
The recognition of vehicle cluster situations is one of the critical technologies of advanced driving, such as intelligent driving and automated driving. The accurate recognition of vehicle cluster situations is helpful for behavior decision-making safe and efficient. In order to accurately and objectively identify the vehicle cluster situation, a vehicle cluster situation model is proposed based on the interval number of set pair logic. The proposed model can express the traffic environment's knowledge considering each vehicle's characteristics, grouping relationships, and traffic flow characteristics in the target vehicle's interest region. A recognition method of vehicle cluster situation is designed to infer the traffic environment and driving conditions based on the connection number of set pair logic. In the proposed model, the uncertainty of the driver's cognition is fully considered. In the recognition method, the relative uncertainty and relative certainty of driver's cognition, traffic information, and vehicle cluster situation are fully considered. The verification results show that the proposed recognition method of vehicle cluster situations can realize accurate and objective recognition. The proposed anthropomorphic recognition method could provide a basis for vehicle autonomous behavior decision-making.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom