z-logo
open-access-imgOpen Access
A Novel Fe3O4/Graphene Oxide Composite Prepared by Click Chemistry for High-Efficiency Removal of Congo Red from Water
Author(s) -
Hongliu Jiang,
Yao Cao,
Feng-Tao Zeng,
Ze-Wu Xie,
FuAn He
Publication year - 2021
Publication title -
journal of nanomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.463
H-Index - 66
eISSN - 1687-4129
pISSN - 1687-4110
DOI - 10.1155/2021/9716897
Subject(s) - materials science , graphene , composite number , adsorption , oxide , thermogravimetric analysis , langmuir adsorption model , chemical engineering , fourier transform infrared spectroscopy , absorption (acoustics) , nanoparticle , analytical chemistry (journal) , composite material , nanotechnology , chemistry , organic chemistry , metallurgy , engineering
In this paper, a magnetic graphene oxide (MGO) composite was prepared by the click reaction between the alkyne-modified Fe3O4 nanoparticles and the azide-modified graphene oxide for the purpose of removing the Congo red (CR) dye from water. The deposition of the Fe3O4 nanoparticles on the graphene oxide to successfully prepare the MGO composite was evidenced by the Fourier-transform infrared spectrometer, wide-angle X-ray diffraction equipment, scanning electron microscope, thermal gravimetric analyzer, and Raman spectrometer. The value of saturation magnetization for the MGO composite was 34.9 emu/g. The CR absorption capacities of the MGO composite increased first and then decreased as the pH value increased. It was found that the maximum adsorption capacity of the MGO composite for the CR was as high as 769.2 mg/g. In the absorption-desorption experiment, the CR absorption capacities of the MGO composite from the second cycle to the fifth cycle remained stable to be about 130 mg/g. Moreover, both the Langmuir model for the adsorption isotherm and the pseudo-second-order kinetic model could be used to describe the CR absorption behaviors of the MGO composite.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom