z-logo
open-access-imgOpen Access
SuperH-Antimagic Total Covering for Generalized Antiprism and Toroidal Octagonal Map
Author(s) -
Amir Taimur,
Gohar Ali,
Muhammad Numan,
Adnan Aslam,
Kraidi Anoh Yannick
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/9680137
Subject(s) - mathematics , bijection , combinatorics , graph
Let G be a graph and H ⊆ G be subgraph of G . The graph G is said to be a , d - H antimagic total graph if there exists a bijective function f : V H ∪ E H ⟶ 1,2,3 , … , V H + E H such that, for all subgraphs isomorphic to H , the total H weights W H = W H = ∑ x ∈ V H f x + ∑ y ∈ E H f y forms an arithmetic sequence a , a + d , a + 2 d , … , a + n − 1 d , where a and d are positive integers and n is the number of subgraphs isomorphic to H . An a , d - H antimagic total labeling f is said to be super if the vertex labels are from the set 1,2 , … , | V G . In this paper, we discuss super a , d - C 3 -antimagic total labeling for generalized antiprism and a super a , d - C 8 -antimagic total labeling for toroidal octagonal map.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom