Dynamic Capacitated Arc Routing Problem in E-Bike Sharing System: A Monte Carlo Tree Search Approach
Author(s) -
Shiqi Tan,
Zhiheng Li,
Na Xie
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/9665340
Subject(s) - computer science , routing (electronic design automation) , mathematical optimization , markov decision process , process (computing) , tree (set theory) , monte carlo method , operations research , monte carlo tree search , markov process , engineering , mathematics , computer network , mathematical analysis , statistics , operating system
This paper studies a dynamic capacitated arc routing problem for battery replacement in an e-bike sharing system, where workers replace batteries for underpowered e-bikes along street segments dynamically. The objective is to replace as many batteries as possible and minimize pickup failures. The temporal dependency of the routing decisions, the conflict of the workers’ operations, and the stochastic and dynamic nature of user demands all make this a difficult problem. To cope with these difficulties, a “Partition-First, Route-Second” bi-level solution framework is adopted to describe the problem in two different time scales. On the large time scale, a spatiotemporal partitioning method, which divides the road network into nonoverlapping subzones, is proposed to decompose the problem. On the small time scale, this paper models the routing decision process of individual worker as a Markov Decision Process. We adopt a lookahead policy that simulates future information and decisions over some horizons to evaluate the long-term influence of current feasible decisions. A Monte Carlo Tree Search algorithm is also used to improve the simulation efficiency. By performing numerical computation experiments on a test case study and comparing with some benchmarking policies, we demonstrate the effectiveness and efficiency of the suggested method.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom