Extracting Modulated Annual Cycle in Climate and Ocean Time Series Using an Enhanced Harmonic Analysis
Author(s) -
Yibo Zhang,
Haidong Pan,
Shuang Li,
Xianqing Lv
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/9625795
Subject(s) - hilbert–huang transform , series (stratigraphy) , nonlinear system , decomposition , reliability (semiconductor) , harmonic , mode (computer interface) , computer science , selection (genetic algorithm) , algorithm , mathematics , statistics , artificial intelligence , geology , physics , paleontology , ecology , power (physics) , white noise , quantum mechanics , biology , operating system
Accurate extraction of the modulated annual cycle (MAC) is important for climatic and oceanic research. A variety of methods are available to extract the annual cycle with inconsistent results. Since actual annual cycles are unknown in the observation series, the reliability and applicability of the results extracted by these methods are difficult to estimate. In this study, three widely used decomposition methods, ensemble empirical mode decomposition (EEMD), nonlinear mode decomposition (NMD), and enhanced harmonic analysis (EHA), are evaluated by idealized numerical experiments for extracting modulated annual cycles from climate series. Idealized numerical experiments are carried out and show that the recently proposed EHA had the most accuracy in extracting the MAC from the constructed data. The optimal independent point (IP) number, which makes the most accurate result for EHA, can be found in each ideal experiment. In the actual experiment, two IP selection criteria are proposed for EHA to extract MAC from observations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom