z-logo
open-access-imgOpen Access
Image Enhancement of Cross-Border E-Commerce Logistics Video Surveillance Based on Partial Differential Equations
Author(s) -
Xiaosheng Yu,
Peili Wu
Publication year - 2021
Publication title -
advances in mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 23
eISSN - 1687-9139
pISSN - 1687-9120
DOI - 10.1155/2021/9544018
Subject(s) - partial differential equation , histogram equalization , computer science , histogram , image (mathematics) , mathematics , computer vision , mathematical analysis
Although the development time of cross-border e-commerce in China is very short, the scale of its transactions and the speed of development are amazing, and as a supporting foundation for promoting economic and trade globalization, cross-border e-commerce has an extremely important strategy for this guiding role. This not only brings new opportunities to cross-border e-commerce companies but also excavates a huge potential market for the logistics industry. Cross-border e-commerce not only breaks through the trade barriers between countries; it makes trade move towards borderlessness and at the same time triggers major changes in international trade. This paper introduces partial differential equations into the video surveillance image enhancement system of cross-border e-commerce logistics. Aiming at the shortcomings of the contrast enhancement method based on gradient field equalization, this paper proposes a partial differential enhancement method based on histogram equalization. By proposing a gradient transformation function, the edges and textures with relatively small gradient values are enhanced to make the original weaker texture details clearer. In order to better adjust the brightness and contrast of the image, combined with histogram equalization, we propose an inverse equalization transformation. When the histogram equalization and the inverse equalization transform are combined reasonably, the brightness and contrast of the image can be adjusted very well. In this paper, the finite difference method is used for discretization when solving partial differential equations, and Euler’s equation is obtained by applying the principle of least squares. By introducing the heat equation, the direct solution of Euler’s equation is converted into an iterative form, which greatly reduces the amount of calculation. This article uses statistical methods to obtain the empirical formula of the fractional differential order. This empirical formula makes the calculation of the order of the fractional derivative easy and can be extended to other fractional image enhancement models and overcomes the shortcomings of the traditional fractional derivative order obtained through experience or a large number of experiments. Experiments show that the proposed algorithm not only enhances detailed texture information but also improves image clarity, overall brightness, and contrast without color distortion. The objective evaluation indicators also show the superiority of the algorithm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom