Characterization of Commercial TiO2 P90 Modified with ZnO by the Impregnation Method
Author(s) -
Tetiana Dontsova,
Olena Yanushevska,
Svitlahirniak,
Anastasiya Kutuzova,
Grigory Krymets,
П. С. Смертенко
Publication year - 2021
Publication title -
journal of chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.436
H-Index - 50
eISSN - 2090-9063
pISSN - 2090-9071
DOI - 10.1155/2021/9378490
Subject(s) - nanocomposite , chemistry , x ray photoelectron spectroscopy , adsorption , photocatalysis , sorption , mesoporous material , desorption , hydroxide , chemical engineering , nanocrystalline material , inorganic chemistry , catalysis , organic chemistry , engineering , crystallography
This article is devoted to TiO2/ZnO nanocomposites’ creation by modifying with the commercial TiO2/P90 product using the impregnation method and identifying the effect of the ZnO modifier on its adsorption, structural, photocatalytic, and electrical properties. The synthesized TiO2/ZnO nanocomposites were characterized by XRD, XRF, XPS, and low-temperature nitrogen adsorption-desorption methods. As a result, nanostructured TiO2/ZnO composites with the ZnO content of 2, 5, 10, and 15% were obtained. It was shown that the phase composition of TiO2/P90 does not change during the nanocomposite synthesis. XPS studies of TiO2/ZnO nanocomposites indicated the presence of Ti4+, Zn2+, O2−, and OH states on their surface, which is associated with TiO2, ZnO, and hydroxide ions. The nitrogen adsorption-desorption method showed that the commercial TiO2/P90 sample is nonporous, and all TiO2/ZnO nanocomposites are characterized by almost the same homogeneous mesoporous structure. Experimentally established sorption and photocatalytic properties depend on the specific surface area and electrostatic interaction with dyes. The effect of the ZnO modifier on I-V characteristics of the TiO2/P90 sample was revealed. The obtained experimental data showed that the TiO2/P90 sample contains one type of current carriers, and TiO2/2ZnO and TiO2/5ZnO nanocomposites are characterized by two types of current carriers.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom