Analysis of Curative Effect and Prognostic Factors of Radiotherapy for Esophageal Cancer Based on the CNN
Author(s) -
Yun-hui Zhao,
Jun-kai Xu,
Qisong Chen
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/9350677
Subject(s) - esophageal cancer , medicine , convolutional neural network , radiation therapy , cancer , deep learning , artificial intelligence , radiology , computer science
An esophageal cancer intelligent diagnosis system is developed to improve the recognition rate of esophageal cancer image diagnosis and the efficiency of physicians, as well as to improve the level of esophageal cancer image diagnosis in primary care institutions. In this paper, by collecting medical images related to esophageal cancer over the years, we establish an intelligent diagnosis system based on the convolutional neural network for esophageal cancer images through the steps of data annotation, image preprocessing, data enhancement, and deep learning to assist doctors in intelligent diagnosis. The convolutional neural network-based esophageal cancer image intelligent diagnosis system has been successfully applied in hospitals and widely praised by frontline doctors. This system is beneficial for primary care physicians to improve the overall accuracy of esophageal cancer diagnosis and reduce the risk of death of esophageal cancer patients. We also analyze that the efficacy of radiation therapy for esophageal cancer can be influenced by many factors, and clinical attention should be paid to grasp the relevant factors in order to improve the final treatment effect and prognosis of patients.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom