z-logo
open-access-imgOpen Access
A Review on Montmorillonite-Supported Nanoscale Zerovalent Iron for Contaminant Removal from Water and Soil
Author(s) -
Yaru Yin,
Wenjuan Zheng,
An Yan,
Chenxi Zhang,
Yuxuan Gou,
Chongyang Shen
Publication year - 2021
Publication title -
adsorption science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.682
H-Index - 36
eISSN - 2048-4038
pISSN - 0263-6174
DOI - 10.1155/2021/9340362
Subject(s) - zerovalent iron , environmental remediation , montmorillonite , chemistry , environmental chemistry , adsorption , groundwater remediation , water treatment , soil water , contaminated water , permeable reactive barrier , contamination , environmental science , environmental engineering , soil science , organic chemistry , ecology , biology
Nanoscale zerovalent iron (nZVI) has shown great promise for water treatment and soil remediation. However, the rapid aggregation of nZVIs significantly affects their mobility and reactivity, which considerably limits the practical applications. Montmorillonite- (Mt-) supported nZVI (Mt-nZVI) has received increasing attention for the past decade because it can prevent the aggregation of nZVI and incorporate the advantages of both nZVI and Mt in soil and water treatment. This work thus had a comprehensive review on the use of Mt-nZVI for soil and water treatment. We first summarized existing methods used to prepare Mt-nZVI, indicating the advantages of using Mt to support nZVI (e.g., increase of the dispersion and mobility of nZVI, reduction of the size and oxidation tendency of nZVI). We then presented the reaction mechanisms of Mt-nZVI for contaminant removal and evaluated the critical factors that influence the removal (e.g., pH, temperature, and dosage of the adsorbent). We further presented examples of applications of Mt-nZVI for the removal of typical contaminants such as heavy metals and organic compounds in soil and water. We finally discussed the limitations of the use of Mt-nZVI for water treatment and soil remediation and presented future directions for the application of nZVI technology for soil and water treatment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom