An Improved Method for Multisensor High Conflict Data Fusion
Author(s) -
Like Wang,
Yu Bao
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/9335300
Subject(s) - fusion , sensor fusion , computer science , data mining , artificial intelligence , philosophy , linguistics
Dempster-Shafer evidence theory can effectively process imperfect information and is widely used in a data fusion system. However, classical Dempster-Shafer evidence theory involves counter-intuitive behaviors with the data of multisensor high conflict in target identification system. In order to solve this problem, an improved evidence combination method is proposed in this paper. By calculating the support degree and the belief entropy of each sensor, the proposed method combines conflict evidences. A new method is used to calculate support degree in this paper. At the same time, inspired by Deng entropy, the modified belief entropy is proposed by considering the scale of the frame of discernment (FOD) and the relative scale of the intersection between evidences with respect to FOD. Because of these two modifications, the effect has been improved in conflict data fusion. Several methods are compared and analyzed through examples. And the result suggests the proposed method can not only obtain reasonable and correct results but also have the highest fusion reliability in solving the problem of high conflict data fusion.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom