z-logo
open-access-imgOpen Access
Personalized Recommendation for Mobile Internet Wealth Management Based on User Behavior Data Analysis
Author(s) -
Xiangyu Ye,
Mengmeng Chen
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/9326932
Subject(s) - the internet , database transaction , computer science , mobile device , world wide web , business , database
Economic development has provided good opportunities for the development of securities companies. Similarly, the development of Internet technology has also brought huge opportunities and challenges to the development of securities companies. Aiming at the current wealth management issues in the era of mobile Internet, this article attempts to develop a personalized recommendation approach on the basis of users’ behavioral data analysis. We analyzed and judged the current situation of mobile Internet wealth management using personalized recommendation systems. On the basis of personalized recommendation, we use the user’s interest tags, personalized recommendation technology, and data mining technology to analyze and summarize customer transaction records. This is done through the use of preservation of customer transaction data. By understanding customers’ investment needs, risk preferences, and other information, we can segment customers and provide them with targeted products and services. As a result of the study, a flexible personalized recommendation framework is designed and validated for mobile Internet wealth management services. The effectiveness of the proposed approach is verified through testing of the developed model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom