An Improved -Means Clustering Intrusion Detection Algorithm for Wireless Networks Based on Federated Learning
Author(s) -
Bin Xie,
Xinyu Dong,
Chang-Guang Wang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/9322368
Subject(s) - cluster analysis , computer science , intrusion detection system , algorithm , k means clustering , intrusion , artificial intelligence , geochemistry , geology
The existing wireless network intrusion detection algorithms based on supervised learning confront many challenges, such as high false detection rate, difficulty in finding unknown attack behaviors, and high cost in obtaining labeled training data sets. This paper presents an improved k -means clustering algorithm for detecting intrusions on wireless networks based on Federated Learning. The proposed algorithm allows multiple participants to train a global model without sharing their private data and can expand the amount of data in the training model and protect the local data of each participant. Furthermore, the cosine distance of multiple perspectives is introduced in the algorithm to measure the similarity between network data objects in the improved k -means clustering process, making the clustering results more reasonable and the judgment of network data behavior more accurate. The AWID, an open wireless network attack data set, is selected as the experimental data set. Its dimensionality reduces by the method of principal component analysis (PCA). Experimental results show that the improved k -means clustering intrusion detection algorithm based on Federated Learning has better performance in detection rate, false detection rate, and detection of unknown attack types.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom