z-logo
open-access-imgOpen Access
An Efficient Data Analysis Framework for Online Security Processing
Author(s) -
Jun Li,
Yan-Zhao Liu
Publication year - 2021
Publication title -
journal of computer networks and communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.355
H-Index - 23
eISSN - 2090-715X
pISSN - 2090-7141
DOI - 10.1155/2021/9290853
Subject(s) - computer science , cloud computing , scalability , data mining , security analysis , tuple , index (typography) , hash function , predicate (mathematical logic) , the internet , database , computer security , world wide web , mathematics , discrete mathematics , programming language , operating system
Industrial cloud security and internet of things security represent the most important research directions of cyberspace security. Most existing studies on traditional cloud data security analysis were focused on inspecting techniques for block storage data in the cloud. None of them consider the problem that multidimension online temp data analysis in the cloud may appear as continuous and rapid streams, and the scalable analysis rules are continuous online rules generated by deep learning models. To address this problem, in this paper we propose a new LCN-Index data security analysis framework for large scalable rules in the industrial cloud. LCN-Index uses the MapReduce computing paradigm to deploy large scale online data analysis rules: in the mapping stage, it divides each attribute into a batch of analysis predicate sets which are then deployed onto a mapping node using interval predicate index. In the reducing stage, it merges results from the mapping nodes using multiattribute hash index. By doing so, a stream tuple can be efficiently evaluated by going over the LCN-Index framework. Experiments demonstrate the utility of the proposed method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom