z-logo
open-access-imgOpen Access
HOXA-AS3 Promotes Proliferation and Migration of Hepatocellular Carcinoma Cells via the miR-455-5p/PD-L1 Axis
Author(s) -
Cheng Zeng,
Shaojun Ye,
Yu Chen,
Qu Zhang,
Yan Luo,
Gai Liang,
Bo Luo
Publication year - 2021
Publication title -
journal of immunology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.315
H-Index - 83
eISSN - 2314-8861
pISSN - 2314-7156
DOI - 10.1155/2021/9289719
Subject(s) - hepatocellular carcinoma , cancer research , apoptosis , cell growth , chemistry , cell cycle , reporter gene , luciferase , cell culture , biology , gene , gene expression , transfection , biochemistry , genetics
Hepatocellular carcinoma (HCC) is the most prevalent type of hepatic carcinoma. Long noncoding RNAs (lncRNAs) are considered crucial regulators of gene expression; however, their functions in HCC are not well understood. Thus, the present study is aimed at elucidating the functions of the lncRNA HOXA-AS3 in HCC. The functions of the HOXA-AS3/miR-455-5p/programmed death-ligand 1 (PD-L1) axis were investigated in vitro via qRT-PCR and dual-luciferase reporter assays. The effect of HOXA-AS3 expression on tumor growth and metastasis was assessed using a mouse xenograft model. High HOXA-AS3 expression was observed in the HCC cell lines. Furthermore, overexpression of HOXA-AS3 in HCC cells enhanced proliferation, migration, and invasion, regulated the cell cycle, and retarded apoptosis. We also identified an miR-455-5p binding site in HOXA-AS3. By sponging miR-455-5p, HOXA-AS3 increased the expression of PD-L1. Additionally, both the inhibition of PD-L1 and overexpression of miR-455-5p reversed the effects on cell proliferation and invasion triggered by the overexpression of HOXA-AS3. In conclusion, HOXA-AS3 modulated the functions of HCC cells through the miR-455-5p/PD-L1 axis. Therefore, HOXA-AS3 may be a novel therapeutic target for HCC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom