Land Circulation, Scale Operation, and Agricultural Carbon Reduction Efficiency: Evidence from China
Author(s) -
Haonan Song,
Hui Jiang,
Shiyun Zhang,
Luan Jingdong
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/9288895
Subject(s) - agriculture , scale (ratio) , agricultural land , circulation (fluid dynamics) , environmental science , data envelopment analysis , china , agricultural economics , geography , mathematics , economics , statistics , engineering , cartography , archaeology , aerospace engineering
Based on the panel data of 30 Chinese province in 2005–2018, this paper quantifies agricultural carbon reduction efficiency (CRE), using the slack-based measure (SBM)-data envelopment analysis (DEA) model with undesired outputs (SBM-DEA ∗ ), and empirically tests that development of land circulation market directly affects agricultural CRE, and indirectly affects agricultural CRE via scale operation of farmland. The results show that the following: (1) In the observation period, China’s agricultural CREs generally evolved from a low level to a high level, with an annual growth rate of 8.0%, but there is still a large space of carbon reduction. (2) Overall, land circulation significantly promoted agricultural CRE, but the promoting effect varied from region to region: the promoting effect was significant in eastern and central regions, and insignificant in western region. (3) Scale operation of farmland had a nonlinear, partial mediation effect on how land circulation influences agricultural CRE; land circulation greatly accelerated the scale operation of farmland, while the growing scale of farmland utilization had an inverted U-shaped influence on agricultural CRE. Our research results imply that promoting land circulation directly drives the low-carbon transformation of agriculture in China, but excessive scale operation of farmland might hinder agricultural carbon reduction.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom