Some Real-Life Applications of a Newly Designed Algorithm for Nonlinear Equations and Its Dynamics via Computer Tools
Author(s) -
Amir Naseem,
M. A. Rehman,
Jihad Younis
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/9234932
Subject(s) - algorithm , convergence (economics) , computer science , nonlinear system , scalar (mathematics) , mathematics , physics , geometry , quantum mechanics , economics , economic growth
In this article, we design a novel fourth-order and derivative free root-finding algorithm. We construct this algorithm by applying the finite difference scheme on the well-known Ostrowski’s method. The convergence analysis shows that the newly designed algorithm possesses fourth-order convergence. To demonstrate the applicability of the designed algorithm, we consider five real-life engineering problems in the form of nonlinear scalar functions and then solve them via computer tools. The numerical results show that the new algorithm outperforms the other fourth-order comparable algorithms in the literature in terms of performance, applicability, and efficiency. Finally, we present the dynamics of the designed algorithm via computer tools by examining certain complex polynomials that depict the convergence and other graphical features of the designed algorithm.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom