z-logo
open-access-imgOpen Access
A Comparison of Autometrics and Penalization Techniques under Various Error Distributions: Evidence from Monte Carlo Simulation
Author(s) -
Faridoon Khan,
Amena Urooj,
Kalim Ullah,
Badr Alnssyan,
Zahra Almaspoor
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/9223763
Subject(s) - multicollinearity , outlier , statistics , econometrics , sample size determination , mean squared error , standard deviation , mathematics , monte carlo method , standard error , computer science , linear regression
This work compares Autometrics with dual penalization techniques such as minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) under asymmetric error distributions such as exponential, gamma, and Frechet with varying sample sizes as well as predictors. Comprehensive simulations, based on a wide variety of scenarios, reveal that the methods considered show improved performance for increased sample size. In the case of low multicollinearity, these methods show good performance in terms of potency, but in gauge, shrinkage methods collapse, and higher gauge leads to overspecification of the models. High levels of multicollinearity adversely affect the performance of Autometrics. In contrast, shrinkage methods are robust in presence of high multicollinearity in terms of potency, but they tend to select a massive set of irrelevant variables. Moreover, we find that expanding the data mitigates the adverse impact of high multicollinearity on Autometrics rapidly and gradually corrects the gauge of shrinkage methods. For empirical application, we take the gold prices data spanning from 1981 to 2020. While comparing the forecasting performance of all selected methods, we divide the data into two parts: data over 1981–2010 are taken as training data, and those over 2011–2020 are used as testing data. All methods are trained for the training data and then are assessed for performance through the testing data. Based on a root-mean-square error and mean absolute error, Autometrics remain the best in capturing the gold prices trend and producing better forecasts than MCP and SCAD.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom