Destroy the Robust Commercial Watermark via Deep Convolutional Encoder-Decoder Network
Author(s) -
Wei Jia,
Zhiying Zhu,
Huaqi Wang
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/9119478
Subject(s) - watermark , computer science , digital watermarking , artificial intelligence , decorrelation , preprocessor , robustness (evolution) , set (abstract data type) , computer vision , image (mathematics) , biochemistry , chemistry , gene , programming language
Nowadays, robust watermark is widely used to protect the copyright of multimedia. Robustness is the most important ability for watermark in application. Since the watermark attacking algorithm is a good way to promote the development of robust watermark, we proposed a new method focused on destroying the commercial watermark. At first, decorrelation and desynchronization are used as the preprocessing method. Considering that the train set of thousands of watermarked images is hard to get, we further use the Bernoulli sampling and dropout in network to achieve the training instance extension. The experiments show that the proposed network can effectively remove the commercial watermark. Meanwhile, the processed image can result in good quality that is almost as good as the original image.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom