z-logo
open-access-imgOpen Access
A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data
Author(s) -
Ammar Khanfer,
Lazhar Bougoffa
Publication year - 2021
Publication title -
journal of function spaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.579
H-Index - 28
eISSN - 2314-8896
pISSN - 2314-8888
DOI - 10.1155/2021/9081623
Subject(s) - cantilever , beam (structure) , structural engineering , boundary (topology) , boundary value problem , deflection (physics) , physics , mathematics , mathematical analysis , engineering , classical mechanics
The boundary value problem of a fourth-order beam equation u 4 = λ f x , u , u ′ , u ″ , u ′ ′ ′ , 0 ≤ x ≤ 1 is investigated. We formulate a nonclassical cantilever beam problem with perturbed ends. By determining appropriate values of λ and estimates for perturbation measurements on the boundary data, we establish an existence theorem for the problem under integral boundary conditions u 0 = u ′ 0 = ∫ 0 1 p x u x d x , u ″ 1 = u ′ ′ ′ 1 = ∫ 0 1 q x u ″ x d x , where p , q ∈ L 1 0 , 1 , and f is continuous on 0 , 1 × 0 , ∞ × 0 , ∞ × − ∞ , 0 × − ∞ , 0 .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom