z-logo
open-access-imgOpen Access
Axial Compression Behavior of Circular Concrete-Filled High-Strength Thin-Walled Steel Tubular Columns with Out-of-Code D/t Ratios
Author(s) -
Junxin Li,
Jian-Tao Wang,
Qing Sun,
Yanru Wu,
Shiming Zhou,
Facheng Wang
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/9081566
Subject(s) - materials science , structural engineering , parametric statistics , deformation (meteorology) , bearing capacity , compression (physics) , composite material , stress (linguistics) , finite element method , displacement (psychology) , mathematics , psychology , linguistics , statistics , philosophy , engineering , psychotherapist
This paper systematically investigated the axial compression behavior of circular concrete-filled high-strength thin-walled steel tubular (CFHTST) columns with out-of-code diameter-to-thickness (D/t) ratios. The axial compression test was first conducted to examine the failure mode, load-displacement curves, and composite mechanism effect. The finite element (FE) model was thereafter established to perform full-range analysis on the load versus displacement curve as well as the interaction behavior, where the parametric study was performed to investigate the influences of the material strengths and geometric sizes. Subsequently, the applicability of typical design methods was evaluated, and a revised equation for determining strain εscy corresponding to ultimate strength was established to assess the plastic deformation capacity of CFHTST columns. Finally, a theoretical model for calculating axial bearing capacity was derived based on unified twin-shear strength theory by considering the influence of intermediate principal stress. The research results indicate that a relatively high confine effect can be guaranteed for CFHTST columns under out-of-code D/t ratios, given that the ratio Nu/Nnom between the measured capacity (Nu) and nominal cross-sectional capacity (Nnom) mainly distributes within 1.179∼1.292; the full-range analysis reflects that the axial load-deformation curve can be distinguished by four various loading stages; the scope b = 0.3∼0.55 of intermediate stress coefficient is generally suggested for predicting axial strength of circular CFST columns within an error of ±5%. The abovementioned study can provide the meaningful design reference for the analysis and application of CFHTST columns.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom