z-logo
open-access-imgOpen Access
2D-DOA Estimation for EMVS Array with Nonuniform Noise
Author(s) -
Changxin Cai,
Guan-Jun Huang,
Fangqing Wen,
Xinhai Wang,
Lin Wang
Publication year - 2021
Publication title -
international journal of antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.282
H-Index - 37
eISSN - 1687-5877
pISSN - 1687-5869
DOI - 10.1155/2021/9053864
Subject(s) - algorithm , subspace topology , computer science , covariance matrix , noise (video) , polarization (electrochemistry) , mathematical optimization , electronic engineering , engineering , mathematics , artificial intelligence , chemistry , image (mathematics)
Electromagnetic vector sensor (EMVS) array is one of the most potential arrays for future wireless communications and radars because it is capable of providing two-dimensional (2D) direction-of-arrival (DOA) estimation as well as polarization angles of the source signal. It is well known that existing subspace algorithm cannot directly be applied to a nonuniform noise scenario. In this paper, we consider the 2D-DOA estimation issue for EMVS array in the presence of nonuniform noise and propose an improved subspace-based algorithm. Firstly, it recasts the nonuniform noise issue as a matrix completion problem. The noiseless array covariance matrix is then recovered via solving a convex optimization problem. Thereafter, the shift invariant principle of the EMVS array is adopted to construct a normalized polarization steering vector, after which 2D-DOA is easily estimated as well as polarization angles by incorporating the vector cross-product technique and the pseudoinverse method. The proposed algorithm is effective to EMVS array with arbitrary sensor geometry. Furthermore, the proposed algorithm is free from the nonuniform noise. Several simulations verify the improvement of the proposed method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom