z-logo
open-access-imgOpen Access
The Value of Convolutional Neural Network-Based Magnetic Resonance Imaging Image Segmentation Algorithm to Guide Targeted Controlled Release of Doxorubicin Nanopreparation
Author(s) -
Hujun Liu,
Hui Gao,
Fei Jia
Publication year - 2021
Publication title -
contrast media and molecular imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.714
H-Index - 50
eISSN - 1555-4317
pISSN - 1555-4309
DOI - 10.1155/2021/9032017
Subject(s) - convolutional neural network , magnetic resonance imaging , segmentation , doxorubicin , liver cancer , image segmentation , artificial intelligence , algorithm , medicine , computer science , pattern recognition (psychology) , cancer , radiology , chemotherapy
There was an investigation of the auxiliary role of convolutional neural network- (CNN-) based magnetic resonance imaging (MRI) image segmentation algorithm in MRI image-guided targeted drug therapy of doxorubicin nanomaterials so that the value of drug-controlled release in liver cancer patients was evaluated. In this study, 80 patients with liver cancer were selected as the research objects. It was hoped that the CNN-based MRI image segmentation algorithm could be applied to the guided analysis of MRI images of the targeted controlled release of doxorubicin nanopreparation to analyze the imaging analysis effect of this algorithm on the targeted treatment of liver cancer with doxorubicin nanopreparation. The results of this study showed that the upgraded three-dimensional (3D) CNN-based MRI image segmentation had a better effect compared with the traditional CNN-based MRI image segmentation, with significant improvement in indicators such as accuracy, precision, sensitivity, and specificity, and the differences were all statistically marked ( p < 0.05). In the monitoring of the targeted drug therapy of doxorubicin nanopreparation for liver cancer patients, it was found that the MRI images of liver cancer patients processed by 3D CNN-based MRI image segmentation neural algorithm could be observed more intuitively and guided to accurately reach the target of liver cancer. The accuracy of targeted release determination of nanopreparation reached 80 ± 6.25%, which was higher markedly than that of the control group (66.6 ± 5.32%) ( p < 0.05). In a word, the MRI image segmentation algorithm based on CNN had good application potential in guiding patients with liver cancer for targeted therapy with doxorubicin nanopreparation, which was worth promoting in the adjuvant treatment of targeted drugs for cancer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom