z-logo
open-access-imgOpen Access
Decision-Making Optimization of Mine Gas Monitoring Based on Gauss Process Regression and Interval Number Correlation Analysis
Author(s) -
Dingwen Dong
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/9031448
Subject(s) - interval (graph theory) , statistics , mathematics , confidence interval , correlation , reliability (semiconductor) , correlation coefficient , interval estimation , prediction interval , power (physics) , physics , geometry , combinatorics , quantum mechanics
For the subjective limitation of gas sensor calibration in coal mines, a decision-making method for gas sensor calibration under monitoring failure was studied based on the Gauss process regression (GPR) and the correlation analysis of interval numbers. Based on the correlation characteristics of gas monitoring data of each monitoring point in the work face area in coal mine, the initial confidence interval of gas concentration in monitoring failure period was obtained by GPR, and then the confidence interval was further optimized by the correlation analysis of interval numbers. According to the correlation characteristics of monitoring data of each monitoring point, its similarity of dynamic variation tendency was measured by using Euclidean distance of interval numbers, and the optimal confidence interval was determined by calculating the correlation degree of interval numbers. The case study shows that making full use of the effective monitoring information of multiple monitoring points ensures the reliability of the initial confidence interval; the dynamic adjustment of model parameters in correlation analysis of interval number avoids the subjectivity defect of similar methods and further obtains the consistency between interval numbers’ reliability and correlation degree, which can ensure the effectiveness of the application of this method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom