z-logo
open-access-imgOpen Access
Fusing Part-of-Speech Information in Low-Resource Neural Paraphrase Generation
Author(s) -
Xiaoqiang Chi,
Yang Xiang
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/9022193
Subject(s) - paraphrase , computer science , task (project management) , natural language processing , artificial intelligence , artificial neural network , resource (disambiguation) , sequence (biology) , computer network , management , biology , economics , genetics
Paraphrase generation is an essential yet challenging task in natural language processing. Neural-network-based approaches towards paraphrase generation have achieved remarkable success in recent years. Previous neural paraphrase generation approaches ignore linguistic knowledge, such as part-of-speech information regardless of its availability. The underlying assumption is that neural nets could learn such information implicitly when given sufficient data. However, it would be difficult for neural nets to learn such information properly when data are scarce. In this work, we endeavor to probe into the efficacy of explicit part-of-speech information for the task of paraphrase generation in low-resource scenarios. To this end, we devise three mechanisms to fuse part-of-speech information under the framework of sequence-to-sequence learning. We demonstrate the utility of part-of-speech information in low-resource paraphrase generation through extensive experiments on multiple datasets of varying sizes and genres.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom