z-logo
open-access-imgOpen Access
Mining Sufficient Knowledge via Progressive Feature Fusion for Efficient Material Recognition
Author(s) -
Hongbin Zhang,
Qipeng Xiong,
Haowei Shi,
Weinan Liang,
Zhong Xiang,
Zhiliang Zhu,
Xiong Li,
Donghong Ji
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/8971349
Subject(s) - exploit , discriminative model , computer science , artificial intelligence , pattern recognition (psychology) , feature (linguistics) , classifier (uml) , fusion , feature selection , feature extraction , machine learning , philosophy , linguistics , computer security
Material images are susceptible to changes, depending on the light intensity, visual angle, shooting distance, and other conditions. Feature learning has shown great potential for addressing this issue. However, the knowledge achieved using a simple feature fusion method is insufficient to fully represent the material images. In this study, we aimed to exploit the diverse knowledge learned by a novel progressive feature fusion method to improve the recognition performance. To obtain implicit cross-modal knowledge, we perform early feature fusion and capture the cluster canonical correlations among the state-of-the-art (SOTA) heterogeneous squeeze-and-excitation network (SENet) features. A set of more discriminative deep-level visual semantics (DVSs) is obtained. We then perform gene selection-based middle feature fusion to thoroughly exploit the feature-shared knowledge among the generated DVSs. Finally, any type of general classifier can use the feature-shared knowledge to perform the final material recognition. Experimental results on two public datasets (Fabric and MattrSet) showed that our method outperformed other SOTA baseline methods in terms of accuracy and real-time efficiency. Even most traditional classifiers were able to obtain a satisfactory performance using our method, thus demonstrating its high practicality.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom