Si-Miao-Yong-An Decoction Maintains the Cardiac Function and Protects Cardiomyocytes from Myocardial Ischemia and Reperfusion Injury
Author(s) -
Wenwen Cui,
Xin Shen,
Lingjuan Zhu,
Mingye Wang,
Yuanyuan Hao,
Yuqian Zhao,
Yang Li,
Yunlong Hou
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/8968464
Subject(s) - western blot , cardiac function curve , pi3k/akt/mtor pathway , reperfusion injury , medicine , myocardial infarction , ischemia , pharmacology , chemistry , apoptosis , heart failure , biochemistry , gene
Objective The aim of this study was to determine whether Si-Miao-Yong-An decoction (SMYAD) could protect cardiomyocytes from ischemia/reperfusion (I/R) injury and its underlying mechanisms.Methods C57BL/6 mice were used to establish a model of myocardial infarction by I/R injury and treated by SMYAD for 4 weeks. Then, the cardiac functions of mice were evaluated by cardiac magnetic resonance (CMR). Histopathological analysis for the heart remodeling was detected by H&E and Masson staining. The protein expression of collagen I, MMP9, and TNF α was detected by western blot in the heart tissues. H9C2 cells were used to establish the hypoxia/reoxygenation (H/R) model and SMYAD intervention. MTT assays detected the cell viability of myocardial cells. The expression level of IL-1 β was evaluated by ELISA. The expression levels of LC3B-II/LC3B-I, p-mTOR, mTOR, NLRP3, procaspase 1, and cleaved-caspase 1 in H9C2 cells were evaluated by Western blot.Results SMYAD improved cardiac functions such as ventricular volume and ejection fraction of the rats with ischemia/reperfusion injury. Morphological assay indicated that SMYAD reduced the scar size and inhibited fibrosis formation. It was found that SMYAD could regulate collagen I, MMP9, and TNF α protein expression levels in the heart tissues. SMYAD improved the survival rate of H9C2 cardiomyocytes in the H/R injury model. SMYAD elevated the rate of LC3B-II/LC3B-I protein expression, decreased the rate of p-mTOR/mTOR protein expression, and reduced expressions of caspase 1, NLRP3, and IL-1 β in H/R cardiomyocytes.Conclusion SMYAD exerted protective effects on ischemia/reperfusion injury in myocardial cells by activating autophagy and inhibiting pyroptosis. This might be the reason why SMYAD protected myocardial tissue and improved cardiac function in mice with ischemia/reperfusion.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom