z-logo
open-access-imgOpen Access
Federated Learning Model with Adaptive Differential Privacy Protection in Medical IoT
Author(s) -
Lii,
Peng Fei Huang,
Yongshan Wei,
Minglei Shu,
Jinquan Zhang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/8967819
Subject(s) - computer science , differential privacy , federated learning , privacy protection , internet of things , computer security , internet privacy , artificial intelligence , data mining
With the proliferation of intelligent services and applications authorized by artificial intelligence, the Internet of Things has penetrated into many aspects of our daily lives, and the medical field is no exception. The medical Internet of Things (MIoT) can be applied to wearable devices, remote diagnosis, mobile medical treatment, and remote monitoring. There is a large amount of medical information in the databases of various medical institutions. Nevertheless, due to the particularity of medical data, it is extremely related to personal privacy, and the data cannot be shared, resulting in data islands. Federated learning (FL), as a distributed collaborative artificial intelligence method, provides a solution. However, FL also involves multiple security and privacy issues. This paper proposes an adaptive Differential Privacy Federated Learning Medical IoT (DPFL-MIoT) model. Specifically, when the user updates the model locally, we propose a differential privacy federated learning deep neural network with adaptive gradient descent (DPFLAGD-DNN) algorithm, which can adaptively add noise to the model parameters according to the characteristics and gradient of the training data. Since privacy leaks often occur in downlink, we present differential privacy federated learning (DP-FL) algorithm where adaptive noise is added to the parameters when the server distributes the parameters. Our method effectively reduces the addition of unnecessary noise, and at the same time, the model has a good effect. Experimental results on real-world data show that our proposed algorithm can effectively protect data privacy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom