Joint Load Balancing and Offloading Optimization in Multiple Parked Vehicle‐Assisted Edge Computing
Author(s) -
Xinyue Hu,
Xiaoke Tang,
Yantao Yu,
Sihai Qiu,
Shiyong Chen
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/8943862
Subject(s) - computer science , computation offloading , mobile edge computing , workload , load balancing (electrical power) , edge computing , distributed computing , server , computer network , latency (audio) , idle , enhanced data rates for gsm evolution , optimization problem , cloud computing , operating system , grid , geometry , mathematics , algorithm , telecommunications
The introduction of mobile edge computing (MEC) in vehicular network has been a promising paradigm to improve vehicular services by offloading computation-intensive tasks to the MEC server. To avoid the overload phenomenon in MEC server, the vast idle resources of parked vehicles can be utilized to effectively relieve the computational burden on the server. Furthermore, unbalanced load allocation may cause larger latency and energy consumption. To solve the problem, the reported works preferred to allocate workload between MEC server and single parked vehicle. In this paper, a multiple parked vehicle-assisted edge computing (MPVEC) paradigm is first introduced. A joint load balancing and offloading optimization problem is formulated to minimize the system cost under delay constraint. In order to accomplish the offloading tasks, a multiple offloading node selection algorithm is proposed to select several appropriate PVs to collaborate with the MEC server in computing tasks. Furthermore, a workload allocation strategy based on dynamic game is presented to optimize the system performance with jointly considering the workload balance among computing nodes. Numerical results indicate that the offloading strategy in MPVEC scheme can significantly reduce the system cost and load balancing of the system can be achieved.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom