z-logo
open-access-imgOpen Access
A Robust Invariant Local Feature Matching Method for Changing Scenes
Author(s) -
Di Wang,
Hongying Zhang,
Yanhua Shao
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/8927822
Subject(s) - computer science , invariant (physics) , artificial intelligence , feature matching , matching (statistics) , pattern recognition (psychology) , computer vision , feature (linguistics) , feature extraction , mathematics , statistics , linguistics , philosophy , mathematical physics
The precise evaluation of camera position and orientation is a momentous procedure of most machine vision tasks, especially visual localization. Aiming at the shortcomings of local features of dealing with changing scenes and the problem of realizing a robust end-to-end network that worked from feature detection to matching, an invariant local feature matching method for changing scene image pairs is proposed, which is a network that integrates feature detection, descriptor constitution, and feature matching. In the feature point detection and descriptor construction stage, joint training is carried out based on a neural network. In the feature point extraction and descriptor construction stage, joint training is carried out based on a neural network. To obtain local features with solid robustness to viewpoint and illumination changes, the Vector of Locally Aggregated Descriptors based on Neural Network (NetVLAD) module is introduced to compute the degree of correlation of description vectors from one image to another counterpart. Then, to enhance the relationship between relevant local features of image pairs, the attentional graph neural network (AGNN) is introduced, and the Sinkhorn algorithm is used to match them; finally, the local feature matching results between image pairs are output. The experimental results show that, compared with the existed algorithms, the proposed method enhances the robustness of local features of varying sights, performs better in terms of homography estimation, matching precision, and recall, and when meeting the requirements of the visual localization system to the environment, the end-to-end network tasks can be realized.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom