z-logo
open-access-imgOpen Access
Tribological Behavior of Ni-Based WC-Co Coatings Deposited via Spray and Fuse Technique Varying the Oxygen Flow
Author(s) -
H. Jiménez,
J.J. Olaya,
J. E. Alfonso
Publication year - 2021
Publication title -
advances in tribology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.325
H-Index - 17
eISSN - 1687-5923
pISSN - 1687-5915
DOI - 10.1155/2021/8898349
Subject(s) - materials science , tribology , scanning electron microscope , abrasion (mechanical) , indentation hardness , abrasive , knoop hardness test , composite material , porosity , energy dispersive x ray spectroscopy , metallurgy , microstructure
The tribological behavior of Ni-based WC-Co coatings is analyzed. The coatings were deposited on gray cast iron substrates in a spray and fuse process using SuperJet Eutalloy deposition equipment, varying the oxygen flow conditions in the flame. The crystallographic structure of the coatings was characterized via the X-ray diffraction (XRD) technique. The microhardness was measured on the surface and in cross sections of the coatings by means of a Knoop microhardness tester. The topography and the morphological characteristics of the coatings and the tribo-surfaces were examined using scanning electron microscopy (SEM) and confocal microscopy, while the chemical composition was measured by means of energy-dispersive X-ray spectroscopy (EDS). The tribological behavior of the coatings was examined via a cohesion-adhesion scratch test, using cross sections of the coatings. Furthermore, two wear tests were carried out, using the pin-on-disk method under ASTM G99 standard and an ASTM standard G65 sand/rubber wheel abrasion wear test. The wear of the coatings showed a close relationship to the porosity in the metal matrix; since then, in the abrasive wear test, a high porosity is related with lower hardness in the coatings; likewise, a low hardness is related with a high wear.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom