Settlement Prediction of Foundation Pit Excavation Based on the GWO‐ELM Model considering Different States of Influence
Author(s) -
Shifan Qiao,
Junkun Tan,
Yonggang Zhang,
Wan Li-jun,
Mingfei Zhang,
Jun Tang,
Qing He
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/8896210
Subject(s) - extreme learning machine , settlement (finance) , excavation , ground subsidence , foundation (evidence) , engineering , computer science , artificial neural network , geotechnical engineering , artificial intelligence , geography , archaeology , world wide web , payment
This paper proposes a novel grey wolf optimization-extreme learning machine model, namely, the GWO-ELM model, to train and predict the ground subsidence by combining the extreme learning machine with the grey wolf optimization algorithm. Taking an excavation project of a foundation pit of Kunming in China as an example, after analyzing the settlement monitoring data of cross sections JC55 and JC56, the representative monitoring sites JC55-2 and JC56-1 were selected as the training monitoring samples of the GWO-ELM model. And three kinds of GWO-ELM models such as considering the influence of time series, influence of settlement factors, and after optimization were established to predict the ground settlement near the foundation pit. The predictive results are that their average relative error and average absolute error are ranked from large to small as GWO-ELM model based on time series, GWO-ELM model based on settlement factors, and optimized GWO-ELM model for the three kinds of GWO-ELM models at monitoring points JC55-2 and JC56-1. Accordingly, the optimized GWO-ELM model has the strongest predictive ability.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom