z-logo
open-access-imgOpen Access
Mode Shape Description and Model Updating of Axisymmetric Structures Using Radial Tchebichef Moment Descriptors
Author(s) -
Chaoping Zang,
HongYi Lan,
Daguang Jiang,
Michael I. Friswell
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/8895583
Subject(s) - zernike polynomials , modal , moment (physics) , vibration , algorithm , rotational symmetry , mode (computer interface) , computer science , normal mode , feature (linguistics) , function (biology) , convergence (economics) , pattern recognition (psychology) , artificial intelligence , mathematics , geometry , physics , acoustics , optics , materials science , philosophy , economic growth , linguistics , biology , operating system , classical mechanics , evolutionary biology , wavefront , polymer chemistry , economics
A novel approach for mode shape feature extraction and model updating of axisymmetric structures based on radial Tchebichef moment (RTM) descriptors is proposed in this study. The mode shape features extracted by RTM descriptors can effectively compress the full-field modal vibration data and retain the most important information. The reconstruction of mode shapes using RTM descriptors can accurately describe the mode shapes, and the simulation shows that the RTM function is superior to Zernike moment function in terms of its mathematical properties and its shape reconstruction ability. In addition, the proposed modal correlation coefficient of the RTM amplitude can overcome the main disadvantage of using the modal assurance criterion (MAC), which has difficulty in identifying double or close modes of symmetric structures. Furthermore, the model updating of axisymmetric structures based on RTM descriptors appears to be more efficient and effective than the normal model updating method directly using modal vibration data, avoids manipulating large amounts of mode shape data, and speeds up the convergence of updating parameters. The RTM descriptors used in correlation analysis and model updating are demonstrated with a cover of an aeroengine rig. The frequency deviation between the test and the FE model was reduced from 17.13% to 1.23% for the first 13 modes via the model updating process. It verified the potential to industrial application with the proposed method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom