A Prediction Method for Postconstruction Settlement of Pile-Soil Composite Subgrade Based on Fuzzy Comprehensive Evaluation
Author(s) -
Hao Shan,
Guanghui Jiang,
Yajing Chang,
Junli Cheng,
Baoning Hong,
Shengcheng Wang
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/8894942
Subject(s) - subgrade , pile , settlement (finance) , geotechnical engineering , composite number , fuzzy logic , geology , structural engineering , computer science , engineering , materials science , composite material , artificial intelligence , world wide web , payment
This paper presents a postconstruction settlement prediction method for pile-soil composite subgrade based on the multilevel fuzzy comprehensive evaluation principle. In this method, the variation range of postconstruction settlement can be obtained from a simple calculation based on the basic data of actual engineering. Firstly, according to the characteristics of influencing factors in the construction of soft soil subgrade, the evaluation index set and two-level factor index sets were selected. The grading standards of the evaluation index and factor index were determined according to the allowable value of the standard and the numerical simulation results. Secondly, each factor index was standardized, and the normal distribution function in the form of exponential was used to construct the standard membership function for the first and second factor indexes. Finally, the comprehensive evaluation matrix of postconstruction settlement of composite subgrade was constructed based on the entropy weight method. The variation range of postconstruction settlement was predicted by the principle of maximum membership. The example analysis shows that the predicted results of the prediction method and the field measurement method are in good agreement, indicating that the proposed method can realize the postconstruction settlement prediction of composite subgrade, and the results are more accurate and more instructive.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom