Structural Defects of Graphene Oxidation Reduction and Its High-Efficiency Structural Reforming Technology
Author(s) -
Junwei An,
Chen Wen,
Chuping Chen,
Xiaolin Qiu
Publication year - 2021
Publication title -
international journal of photoenergy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.426
H-Index - 51
eISSN - 1687-529X
pISSN - 1110-662X
DOI - 10.1155/2021/8894830
Subject(s) - graphene , materials science , oxide , graphene foam , graphene oxide paper , impurity , chemical engineering , graphene nanoribbons , oxygen , conductivity , nanotechnology , chemistry , metallurgy , organic chemistry , engineering
The Hummers’ method is used to prepare graphene oxide and graphene powder, and the obtained powder material contains a large amount of oxygen-containing groups. Due to the effect of strong oxidants, there are many defects on the graphene body. Although a large number of oxygen-containing groups are reduced by the reduction reaction, the defects of the graphene body are numerous, which has a great influence on the conductivity of graphene and also limits the high carrier transport capability and application of graphene itself. Using industrial means, the graphene powder is highly reduced, and the ultrathin graphene powder is obtained, the graphene powder has extremely low impurity content, and the defects are substantially completely reduced. Then, these lay the foundation for its application in the battery industry.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom