z-logo
open-access-imgOpen Access
Enhanced Arsenic Removal from Aqueous Solution by Fe/Mn-C Layered Double Hydroxide Composite
Author(s) -
Yaru Wang,
Yingying Gao,
Zongqiang Zhu,
Lihao Zhang,
Ningning Zhao,
Yali Fang,
Yinian Zhu,
Guifeng Liu
Publication year - 2021
Publication title -
adsorption science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.682
H-Index - 36
eISSN - 2048-4038
pISSN - 0263-6174
DOI - 10.1155/2021/8891643
Subject(s) - chemistry , aqueous solution , arsenic , composite number , hydroxide , adsorption , layered double hydroxides , inorganic chemistry , nuclear chemistry , chemical engineering , organic chemistry , composite material , materials science , engineering
A novel material named Fe/Mn-C layered double hydroxide composite (Fe/Mn-C-LDH) was synthesized to remove arsenic from an aqueous solution. The removal performance of the composite toward arsenic ions was studied through the batch experiments. The experiment results showed that Fe/Mn-C-LDH exhibited a high adsorption capacity of 46.47 mg/g for As(III) and 37.84 mg/g for As(V) at 318 K, respectively. In addition, the investigation of the release of Fe3+ and Mn2+ in the process of arsenic adsorption revealed that the Fe/Mn-C-LDH exhibited better stability than Fe/Mn-layer double hydroxide (Fe/Mn-LDH) with fewer Mn2+ and Fe3+ releasing under the same condition. The BET results showed that the specific surface area of Fe/Mn-C-LDH decreased after adsorption of As (III) and As (V). Furthermore, the Density Functional Theory (DFT) calculation results proved that the adsorbent combining arsenic by T-site to produce a better adsorption effect for arsenic. Possessing better stability and adsorption capacity, Fe/Mn-C-LDH could potentially serve as a perfect adsorbent for arsenic removal from an aqueous environment. It would provide a promising approach for removing heavy metal from the aquatic environment in the future.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom