z-logo
open-access-imgOpen Access
Attention-Based Temporal Encoding Network with Background-Independent Motion Mask for Action Recognition
Author(s) -
Zhengkui Weng,
Zhipeng Jin,
Shuangxi Chen,
Quanquan Shen,
Xiangyang Ren,
Wuzhao Li
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/8890808
Subject(s) - computer science , artificial intelligence , discriminative model , pattern recognition (psychology) , motion (physics) , convolutional neural network , redundancy (engineering) , encoding (memory) , object (grammar) , focus (optics) , computer vision , physics , optics , operating system
Convolutional neural network (CNN) has been leaping forward in recent years. However, the high dimensionality, rich human dynamic characteristics, and various kinds of background interference increase difficulty for traditional CNNs in capturing complicated motion data in videos. A novel framework named the attention-based temporal encoding network (ATEN) with background-independent motion mask (BIMM) is proposed to achieve video action recognition here. Initially, we introduce one motion segmenting approach on the basis of boundary prior by associating with the minimal geodesic distance inside a weighted graph that is not directed. Then, we propose one dynamic contrast segmenting strategic procedure for segmenting the object that moves within complicated environments. Subsequently, we build the BIMM for enhancing the object that moves based on the suppression of the not relevant background inside the respective frame. Furthermore, we design one long-range attention system inside ATEN, capable of effectively remedying the dependency of sophisticated actions that are not periodic in a long term based on the more automatic focus on the semantical vital frames other than the equal process for overall sampled frames. For this reason, the attention mechanism is capable of suppressing the temporal redundancy and highlighting the discriminative frames. Lastly, the framework is assessed by using HMDB51 and UCF101 datasets. As revealed from the experimentally achieved results, our ATEN with BIMM gains 94.5% and 70.6% accuracy, respectively, which outperforms a number of existing methods on both datasets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom