z-logo
open-access-imgOpen Access
Distant Supervision for Relation Extraction with Sentence Selection and Interaction Representation
Author(s) -
Tiantian Chen,
Nianbin Wang,
Hongbin Wang,
Haomin Zhan
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/8889075
Subject(s) - computer science , selection (genetic algorithm) , relationship extraction , representation (politics) , sentence , relation (database) , natural language processing , artificial intelligence , information retrieval , data mining , politics , political science , law
Distant supervision (DS) has been widely used for relation extraction (RE), which automatically generates large-scale labeled data. However, there is a wrong labeling problem, which affects the performance of RE. Besides, the existing method suffers from the lack of useful semantic features for some positive training instances. To address the above problems, we propose a novel RE model with sentence selection and interaction representation for distantly supervised RE. First, we propose a pattern method based on the relation trigger words as a sentence selector to filter out noisy sentences to alleviate the wrong labeling problem. After clean instances are obtained, we propose the interaction representation using the word-level attention mechanism-based entity pairs to dynamically increase the weights of the words related to entity pairs, which can provide more useful semantic information for relation prediction. The proposed model outperforms the strongest baseline by 2.61 in F1-score on a widely used dataset, which proves that our model performs significantly better than the state-of-the-art RE systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom