Bearing Fault Diagnosis Using Synthetic Quantitative Index-Based Adaptive Underdamped Stochastic Resonance
Author(s) -
Baochen Li,
Rui Tong,
Jianshe Kang,
Kuo Chi
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/8888079
Subject(s) - kurtosis , bearing (navigation) , stochastic resonance , fault (geology) , correlation coefficient , control theory (sociology) , mathematics , margin (machine learning) , algorithm , noise (video) , statistics , computer science , artificial intelligence , control (management) , machine learning , seismology , image (mathematics) , geology
Stochastic resonance is like a nonlinear filter to detect the weak bearing fault-induced impulses that submerged in strong noises. Signal-to-noise ratio (SNR) is often used as the index to evaluate the SR output, but the fault characteristic frequency (FCF) must be known in order to calculate SNR. A novel bearing fault diagnosis method called synthetic quantitative index-based adaptive underdamped stochastic resonance (SQI-AUSR) is proposed. The synthetic quantitative index (SQI) is composed of power spectrum kurtosis, kurtosis, margin index, and correlation coefficient. The SQI is independent of FCF, which avoids the limitation that the calculation of SNR must know the FCF. Numeric simulations and two case studies of bearing faults are carried out. The results show that (1) the SQI is more effective than other proposed indexes such as correlation coefficient and weight power spectrum kurtosis and (2) the proposed SQI-AUSR is effective for bearing fault diagnosis and is better than SNR-AOSR.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom