z-logo
open-access-imgOpen Access
Histogram Publication over Numerical Values under Local Differential Privacy
Author(s) -
Xu Zheng,
Ke Yan,
Jingyuan Duan,
Wenyi Tang,
Ling Tian
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/8886255
Subject(s) - differential privacy , computer science , histogram , privacy protection , data mining , internet privacy , artificial intelligence , image (mathematics)
Local differential privacy has been considered the standard measurement for privacy preservation in distributed data collection. Corresponding mechanisms have been designed for multiple types of tasks, like the frequency estimation for categorical values and the mean value estimation for numerical values. However, the histogram publication of numerical values, containing abundant and crucial clues for the whole dataset, has not been thoroughly considered under this measurement. To simply encode data into different intervals upon each query will soon exhaust the bandwidth and the privacy budgets, which is infeasible for real scenarios. Therefore, this paper proposes a highly efficient framework for differentially private histogram publication of numerical values in a distributed environment. The proposed algorithms can efficiently adopt the correlations among multiple queries and achieve an optimal resource consumption. We also conduct extensive experiments on real-world data traces, and the results validate the improvement of proposed algorithms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom