A High-Order Iterative Scheme for a Nonlinear Pseudoparabolic Equation and Numerical Results
Author(s) -
Nguyễn Hữu Nhân,
Tran Trinh Manh Dung,
Le Thi Mai Thanh,
Le Thi Phuong Ngoc,
Nguyễn Thành Long
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/8886184
Subject(s) - mathematics , nonlinear system , dirichlet boundary condition , algorithm , mathematical analysis , boundary value problem , physics , quantum mechanics
In this paper, by applying the Faedo-Galerkin approximation method and using basic concepts of nonlinear analysis, we study the initial-boundary value problem for a nonlinear pseudoparabolic equation with Robin–Dirichlet conditions. It consists of two main parts. Part 1 is devoted to proof of the unique existence of a weak solution by establishing an approximate sequence u m based on a N -order iterative scheme in case of f ∈ C N 0,1 × 0 , T ∗ × ℝ N ≥ 2 , or a single-iterative scheme in case of f ∈ C 1 Ω ¯ × 0 , T ∗ × ℝ . In Part 2, we begin with the construction of a difference scheme to approximate u m of the N -order iterative scheme, with N = 2 . Next, we present numerical results in detail to show that the convergence rate of the 2-order iterative scheme is faster than that of the single-iterative scheme.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom