z-logo
open-access-imgOpen Access
Quantized Feedback Control of Active Suspension Systems Based on Event Trigger
Author(s) -
Jinwei Sun,
Jingyu Cong,
Weihua Zhao,
Yonghui Zhang
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/8886069
Subject(s) - control theory (sociology) , controller (irrigation) , active suspension , actuator , sprung mass , lyapunov stability , lyapunov function , suspension (topology) , process (computing) , engineering , channel (broadcasting) , energy consumption , computer science , control engineering , nonlinear system , control (management) , mathematics , damper , physics , electrical engineering , artificial intelligence , quantum mechanics , homotopy , pure mathematics , agronomy , biology , operating system
As the deviation error will accumulate during the data acquisition and transcoding process of an active suspension system, this paper presents a sliding-mode-based quantized feedback control method. The aim of the controller is to improve the vertical performance of vehicles in the presence of external interferences. A 7-DOF suspension model with nonlinear springs and actuator dynamics is built for the control purpose. Firstly, a static quantizer on the uplink channel and a dynamic quantizer on the downlink channel are considered in the sliding mode controller to reduce the cumulative error and suppress the sprung mass motions. Secondly, an event trigger mechanism is introduced in the controller design process to reduce energy consumption and operation frequency of the actuator. The overall stability of the designed controller is proved by the Lyapunov functions. Finally, numerical simulations are carried out to evaluate the efficacy of the proposed controller. Different quantitative and trigger conditions are discussed, and the random road excitation is considered as the external disturbance input. The results of the control method indicate that the designed controller can improve the riding comfort with little loss of handling stability compared with the passive system. In addition, the trigger mechanism can improve the working efficiency of actuators effectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom