z-logo
open-access-imgOpen Access
Huiyang Shengji Extract Improve Chronic Nonhealing Cutaneous through the TGF-β1/Smad3 Signaling Pathway
Author(s) -
Yan Lin,
Xiujuan He,
Xinran Xie,
Qingwu Liu,
Jia Chen,
Ping Li
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/8881565
Subject(s) - fibroblast , secretion , paracrine signalling , transforming growth factor , inflammation , microbiology and biotechnology , signal transduction , cancer research , chemistry , medicine , immunology , biology , receptor , biochemistry , in vitro
Chronic nonhealing cutaneous wounds are a thorny problem in the field of surgery because of their prolonged and unhealed characteristics. Huiyang Shengji extract (HSE) is an extract of traditional Chinese medicine prescription for treating chronic wounds. This study aims to investigate the regulation of M1 macrophages on fibroblast proliferation and secretion and the intervention mechanism of Huiyang Shengji extract. We found that the effects of HSFs stimulated with paracrine factors from M1 macrophages were as follows: the proliferation of HSFs was reduced, the expression of MKI-67 was downregulated, and the content and gene expression of the inflammation factors and fibroblast MMPs were increased, while the content and gene expression of TIMP-1 are decreased, the content of human fibroblasts secreting type I collagen (COL1A1) and type III collagen (COL3A1) was decreased, and the TGF- β 1/Smad3 signaling pathway was inhibited. Interestingly, HSE inhibited these effects of M1 macrophages on human fibroblasts after the intervention, and the inhibitory effect was related to the concentration. In conclusion, M1 macrophages caused changes in HSFs and secretion, while HSE has a specific regulatory effect on the proliferation and secretion of fibroblasts caused by M1 macrophages.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom