z-logo
open-access-imgOpen Access
Research on the Influence of Time‐Varying Excitation on Vibration Characteristics of the Spiral Bevel Geared Transmission System with Broken Teeth
Author(s) -
Dalian Yang,
Liman Chen,
Lingli Jiang,
Ping Wang,
Jie Tao
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/8880851
Subject(s) - spiral (railway) , bevel gear , spiral bevel gear , vibration , excitation , transmission (telecommunications) , structural engineering , engineering , acoustics , physics , mechanical engineering , electrical engineering
Due to heavy and alternating loads of working conditions, spiral bevel gears are prone to broken tooth failures. To solve the problem of vibration characteristic of spiral bevel geared transmission with broken tooth failures that is unknown, this study, considering time-varying mesh stiffness and friction excitation, proposed a torsional vibration dynamic model of spiral bevel geared transmission, which has more simple transmission path and the smaller signal attenuation. First, the time-varying excitations of various broken tooth failure are calculated and introduced into the torsional vibration dynamic model. The vibration response of spiral bevel geared transmission with various broken tooth failures is analysed in the time-frequency domain. Then, the sensitivity of the time-domain statistical index and the frequency domain components to different broken tooth failures are studied. Finally, the correctness of the simulation is verified by experiment. The results show that the crest factor is sensitive to minor tooth failure (10–30%), while kurtosis is sensitive to severe failure (30–60%). With the increase of degrees of broken tooth failure, the energy of the low-frequency band increases obviously.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom