z-logo
open-access-imgOpen Access
Scaling Performance Analysis and Optimization Based on the Node Spatial Distribution in Mobile Content-Centric Networks
Author(s) -
Jiajie Ren,
Demin Li,
Lei Zhang,
Guanglin Zhang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/8880015
Subject(s) - computer science , scaling , node (physics) , content distribution , computer network , mathematics , structural engineering , engineering , geometry
Content-centric networks (CCNs) have become a promising technology for relieving the increasing wireless traffic demands. In this paper, we explore the scaling performance of mobile content-centric networks based on the nonuniform spatial distribution of nodes, where each node moves around its own home point and requests the desired content according to a Zipf distribution. We assume each mobile node is equipped with a finite local cache, which is applied to cache contents following a static cache allocation scheme. According to the nonuniform spatial distribution of cache-enabled nodes, we introduce two kinds of clustered models, i.e., the clustered grid model and the clustered random model. In each clustered model, we analyze throughput and delay performance when the number of nodes goes infinity by means of the proposed cell-partition scheduling scheme and the distributed multihop routing scheme. We show that the node mobility degree and the clustering behavior play the fundamental roles in the aforementioned asymptotic performance. Finally, we study the optimal cache allocation problem in the two kinds of clustered models. Our findings provide a guidance for developing the optimal caching scheme. We further perform the numerical simulations to validate the theoretical scaling laws.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom